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Abstract: A methodology is developed for deriving consistent ocean biological and biogeo-
chemical products from multiple satellite ocean color sensors that have slightly different sensor
spectral characteristics. Specifically, the required coefficients for algorithm modifications are
obtained using the hyperspectral in situ optical measurements from the Marine Optical Buoy
(MOBY) in the water off Hawaii. It is demonstrated that using the proposed approach for
modifying ocean biological and biogeochemical algorithms, satellite-derived ocean property
data over the global open ocean are consistent from multiple satellite sensors, although their
corresponding sensor-measured normalized water-leaving radiance spectra nLw(λ) are different.
Therefore, the proposed approach allows satellite-derived ocean biological and biogeochemical
products to be consistent and can therefore be routinely merged from various satellite ocean color
sensors. The proposed approach can be applied to any satellite algorithms that use the input of
sensor-measured nLw(λ) spectra.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

For ocean color remote sensing, after carrying out atmospheric correction [1–5], satellite
sensors measure normalized water-leaving radiance nLw(λ) spectra or normalized water-leaving
reflectance ρwN(λ) [or remote sensing reflectance Rrs(λ)] spectra, which are defined as ρwN(λ)= π
nLw(λ)/F0(λ) and Rrs(λ)= ρwN(λ)/π, with F0(λ) the extraterrestrial solar irradiance [6]. The
sensor spectral bands chosen are those sensitive to water biological and biogeochemical properties,
which allow these properties to be derived from satellite-measured nLw(λ) spectra. Effectively,
satellite-derived nLw(λ) spectra are the same as (or close to) those measured directly on the ocean
surface assuming that there was no atmosphere and the Sun at the nadir [1,3,7–9]. However,
even for the same series of satellite sensors, e.g., the Visible Infrared Imaging Radiometer
Suite (VIIRS) [10] on the Suomi National Polar-orbiting Partnership (SNPP) (2011–present),
NOAA-20 (N20) (2017–present), and the Joint Polar Satellite System (JPSS) three follow-on
VIIRS sensors in the future, the sensor spectral characteristics will always have some differences.
For satellite sensors from different space agencies (or from a different series of instruments),
the spectral band differences may be large even though they are all designed for ocean color
remote sensing, e.g., comparing ocean color sensors among VIIRS [10], the Sea-viewing Wild
Field-of-view Sensor (SeaWiFS) [11], the Moderate Resolution Imaging Spectroradiometer
(MODIS) [12,13] on the Terra and Aqua, the Medium-Resolution Imaging Spectrometer (MERIS)
[14] on the Envisat, the Ocean and Land Colour Instrument (OLCI) [15] on the Sentinel-3A
(S3A) and Sentinel-3B (S3B), the Second-Generation Global Imager (SGLI) on the Global
Change Observation Mission-Climate (GCOM-C) satellite, and others (e.g., the Geostationary
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Ocean Color Imager (GOCI) [16,17]). In particular, sensor spectral response function (SRF) (i.e.,
sensor spectral response or measurement as a function of wavelength) differences from the two
different VIIRS sensors (or from VIIRS and OLCI or SGLI) can have different sensor-measured
nLw(λ) spectra [18], which if ignored will lead to differences in satellite-derived biological
and biogeochemical products, e.g., chlorophyll-a (Chl-a) concentration [19–21], water diffuse
attenuation coefficient at the wavelength of 490 nm Kd(490) [22–24] or at the photosynthetically
available radiation (PAR) Kd(PAR) [24,25], etc. These differences are often noticeable and
sometimes significant, making it difficult to produce consistent data products and merge data
directly from multiple satellite sensors.
Satellite algorithms for deriving ocean biological and biogeochemical products, which are

computed from the input of sensor-measured nLw(λ) [or ρwN(λ)] spectra, can be adjusted and
modified based on the sensor spectral characteristics (i.e., SRFs). For example, Chl-a algorithms
for SeaWiFS, MODIS, MERIS, and other sensors have been developed [26,27] and used for
deriving global open ocean Chl-a products. Specifically, coefficients for Chl-a algorithms for
different satellite sensors (different sensor SRFs) are adjusted and modified for the specific set
of spectral bands corresponding to a specific satellite sensor. Therefore, consistent Chl-a data
can be derived using the same Chl-a algorithm (but with different empirical fitting coefficients)
for different satellite sensors, e.g., the Chl-a algorithm OC4 for SeaWiFS, OC3M for MODIS,
OC4E for MERIS, etc. [26,27]. In principle, such a coefficient adjustment approach to account
for differences in sensor SRFs could always be carried out if there were enough good quality
in situ biological and biogeochemical data with the corresponding in situ hyperspectral nLw(λ)
data (for accounting for the differences in sensor SRFs). However, the approach is not always
straightforward for satellite optical, biological, and biogeochemical algorithms with limited
high quality in situ data and limited spectral coverage over the global ocean, e.g., Kd(490) data,
inherent optical property (IOP) data [28–31], suspended particulate matter (SPM) data [32], or
other new ocean property products that lack the in situ data with the corresponding hyperspectral
nLw(λ) [or ρwN(λ)] spectra.
In this paper, a methodology to account for sensor SRF differences in satellite biological

and biogeochemical algorithms (or any other algorithms using the input of nLw(λ) spectra) is
proposed and described. Specifically, the effect of satellite-derived nLw(λ) [or ρwN(λ)] spectra
from different satellite sensors (with different SRFs) are first accurately accounted for using the
in situ optics measurements from the Marine Optical Buoy (MOBY) in the water off Hawaii
[33] (https://coastwatch.noaa.gov/cw/field-observations/MOBY.html). It should be noted that,
because of the sensor SRF effect, satellites actually measure the sensor SRF-weighted nLw(λ)
spectra [18]. MOBY in situ hyperspectral nLw(λ) measurements over the entire visible spectral
wavelengths make it possible to compute sensor SRF-weighted nLw(λ) spectra for any given
satellite ocean color sensor. Thus, the spectral effect on satellite-derived nLw(λ) spectra for
various satellite ocean color sensors can be accurately calculated. In fact, the formulations to
account for differences in the specific sensor spectral characteristics for satellite biological and
biogeochemical algorithms (or any other nLw(λ)-based algorithms) are rigorous, with appropriate
coefficients derived from the MOBY in situ data. Therefore, the approach can be used for any
satellite sensors and for any optical, biological, and biogeochemical algorithms that use the
input of satellite-derived nLw(λ) spectra. Results of Chl-a and Kd(490) from VIIRS-SNPP and
VIIRS-N20 are provided and discussed, showing that consistent ocean color data from the two
sensors can be obtained using the proposed approach. In addition, some results (particularly
required coefficients) and discussions for deriving consistent Chl-a and Kd(490) from satellite
ocean color sensors of VIIRS, OLCI, and SGLI are provided.

https://coastwatch.noaa.gov/cw/field-observations/MOBY.html
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2. Methodology

In this section, the approach to deal with the sensor spectral band differences in Chl-a and Kd(490)
algorithms from different satellite ocean color sensors is outlined. Specifically, the required
modifications for Chl-a and Kd(490) algorithms for VIIRS-N20, OLCI-S3A, and SGLI-GCOM-C
to derive Chl-a and Kd(490) products consistently with those from VIIRS-SNPP are described
and discussed. It is noted that in this study all satellite data processing are carried out using the
Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system [34], which is
the NOAA official VIIRS ocean color data processing system. MSL12 is an enterprise satellite
ocean color data processing system, capable of processing ocean color product data consistently
from multiple satellite ocean color sensors [35–37].

2.1. Chl-a algorithms

2.1.1. The OC3 V algorithm

Over the global open ocean, the distribution of phytoplankton Chl-a has been measured from
space using the empirical regressions of spectral reflectance ratios in normalized water-leaving
reflectance ρwN(λ) [or remote sensing reflectanceRrs(λ)] at the blue and green bands [19,27,38,39].
In particular, the traditional VIIRS-SNPP Chl-a algorithm is based on the ocean chlorophyll-type
(OCx) [19] using ρwN(λ) at the wavelengths of 443, 486, and 551 nm, corresponding to the
VIIRS M2, M3, and M4 bands. The VIIRS three-band blue-green reflectance ratio algorithm is
named as OC3V [34]. Similar empirical Chl-a algorithms exist for SeaWiFS (e.g., the OC2 and
OC4 Chl-a algorithms) and MODIS (e.g., the OC3M Chl-a algorithm) [26]. Specifically, the
OC3V algorithm for VIIRS can be written as:

Chl-a = 10
∑i=4

i=0 ai Xi
, (1)

with
X = max

[
log10

(
ρwN(M2)
ρwN(M4)

)
, log10

(
ρwN(M3)
ρwN(M4)

)]
, (2)

where ρwN(M2), ρwN(M3), and ρwN(M4) are corresponding to VIIRS-derived ρwN(λ) at spectral
bands of M2, M3, and M4, respectively. The above Eq. (2) takes a larger value of two reflectance
ratios in logarithmic scale. The five coefficients a0 to a4 are the best fitting coefficients for
the three-band empirical Chl-a algorithm from in situ measurements [19,26]. Specifically,
for VIIRS-SNPP these five coefficients are 0.2228, −2.4683, 1.5867, −0.4275, and−0.7768.
For convenience in discussion, Chl-a concentration data (or any parameter Y) derived from
VIIRS-SNPP (SNPP) and VIIRS-NOAA-20 (N20) are noted as [Chl-a](SNPP) and [Chl-a](N20)

(or [Y](SNPP) and [Y](N20)), respectively. It is noted that the discussion can be applied to any
two sensors, i.e., one can simply treat “SNPP” and “N20” as names from any two sensors, e.g.,
sensors A and B.

Using Eqs. (1) and (2), Chl-a data fromVIIRS-SNPP and VIIRS-N20 can be derived. However,
due to slight differences in sensor SRFs, X(SNPP) and X(N20) values in Eq. (2) are generally
different for the two VIIRS sensors, leading to different Chl-a values from the two satellite
sensors. It should be emphasized that differences in satellite-derived Chl-a data using Eqs. (1)
and (2) are due to sensor SRF differences from the two sensors, not from real measurements.
This difference in satellite-derived Chl-a is certainly not reasonable and desirable, and therefore
requires algorithm corrections and modifications.

To derive consistent Chl-a data from the two VIIRS sensors that have slightly different sensor
SRFs, Eq. (2) for VIIRS-N20 can be specifically written as the same formula as for VIIRS-SNPP
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but with ρwN(λ) inputs from VIIRS-N20, i.e.,

X(N20) = max

[
log10

(
r24

[(
ρwN(M2)
ρwN(M4)

)] (N20))
, log10

(
r34

[(
ρwN(M3)
ρwN(M4)

)] (N20)) ]
, (3)

with coefficients r24 and r34 are:

r24 =
[(
ρwN(M2)
ρwN(M4)

)] (SNPP)
/

[(
ρwN(M2)
ρwN(M4)

)] (N20)
and r34 =

[(
ρwN(M3)
ρwN(M4)

)] (SNPP)
/

[(
ρwN(M3)
ρwN(M4)

)] (N20)
.

(4)
Therefore, using Eqs. (1), (3), and (4) with the inputs from VIIRS-N20-measured ρwN(λ) values,
Chl-a data derived from VIIRS N20 and SNPP are now consistent, i.e., we have forced (or
adjusted) X(N20) = X(SNPP), eliminating the effects of the SRF differences from the two sensors.
Using Eqs. (3) and (4) for VIIRS-N20 Chl-a computation, there are no biases in satellite-derived
Chl-a data due to slight differences in sensor spectral band characteristics from the two sensors.
In fact, with the modifications in Eqs. (3) and (4), Chl-a algorithms for VIIRS-SNPP and
VIIRS-N20 are exactly the same, assuming that coefficients r24 and r34 in Eq. (4) can be derived
accurately. It is particularly noted that these equations are derived rigorously.

2.1.2. The OCI algorithm

To improve the Chl-a data quality over global oligotrophic waters, the ocean color index (OCI)
algorithm has been developed [20]. The OCI Chl-a algorithm has also been implemented in
MSL12 for VIIRS global ocean color data processing with an improved Chl-a data merging
method between the color index (CI)-based and OC3V-based Chl-a algorithms [21]. Indeed,
the VIIRS OCI Chl-a algorithm combines the CI and OC3V Chl-a algorithms for the global
open ocean and shows improvements over global clear (oligotrophic) ocean regions [19–21,26].
Specifically, the VIIRS-SNPP CI-based Chl-a algorithm can be written as [21]:

[Chl-a](SNPP)CI = 10216.76×CI(SNPP)−0.4093 and

CI(SNPP) = [Rrs(M4)](SNPP) − 0.526 [Rrs(M2)](SNPP) − 0.474 [Rrs(M5)](SNPP)
, (5)

with the parameter CI(SNPP) computed from VIIRS-SNPP-measured remote-sensing reflectance
[Rrs(λ)](SNPP) at the bands M2 (443 nm), M4 (551 nm), and M5 (671 nm) [21]. Therefore, the
VIIRS-SNPP OCI Chl-a algorithm can be written as [21],

[Chl-a](SNPP)OCI = [Chl-a](SNPP)CI for [r](SNPP)>4,

[Chl-a](SNPP)OCI = w [Chl-a](SNPP)CI + (1 − w) [Chl-a](SNPP)OC3V for 2<[r](SNPP) ≤ 4, and

[Chl-a](SNPP)OCI = [Chl-a](SNPP)OC3V for [r](SNPP) ≤ 2,

(6)

where [Chl-a](SNPP)OC3V and [Chl-a](SNPP)CI are Chl-a concentration derived from the OC3V [Eqs. (1)
and (2)] and the CI [Eq. (5)] Chl-a algorithm, respectively. In Eq. (6), the remote-sensing
reflectance ratio [r](SNPP) from the VIIRS-SNPP bands M2 and M4 is used for the weight w
computation [21], i.e.,

w = 0.5 ([r](SNPP) − 2) for 2<[r](SNPP) ≤ 4,

w = 0 for [r](SNPP) ≤ 2, and

w = 1 for [r](SNPP)>4with [r](SNPP) = [Rrs(M2)](SNPP)

[Rrs(M4)](SNPP)
.

(7)

Using the same approach as discussed in the previous section for the OC3V Chl-a algorithm with
inputs from the VIIRS-N20-measured [Rrs(λ)](N20) at the bands M2 (443 nm), M4 (556 nm), and
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M5 (667 nm), the CI-based Chl-a algorithm for VIIRS-N20 can be written as:

[Chl-a](N20)CI = 10216.76×CI(N20)−0.4093, and

CI(N20) = r4 · [Rrs(M4)](N20) − r2 · 0.526 [Rrs(M2)](N20) − r5 · 0.474 [Rrs(M5)](N20), (8)

where

r2 =
[Rrs(M2)](SNPP)

[Rrs(M2)](N20)
, r4 =

[Rrs(M4)](SNPP)

[Rrs(M4)](N20)
, and r5 =

[Rrs(M5)](SNPP)

[Rrs(M5)](N20)
. (9)

Therefore, it is now straightforward to also write the merged OCI Chl-a algorithm for VIIRS-N20,
i.e.,

[Chl-a](N20)OCI = [Chl-a](N20)CI for r24 · [r](N20)>4,

[Chl-a](N20)OCI = w [Chl-a](N20)CI + (1 − w) [Chl-a](N20)OC3V for 2<r24 · [r](N20) ≤ 4, and

[Chl-a](N20)OCI = [Chl-a](N20)OC3V for r24 · [r](N20) ≤ 2,

(10)

where

[r](N20) =
[Rrs(M2)](N20)

[Rrs(M4)](N20)
, r24 =

[Rrs(M2)](SNPP)

[Rrs(M4)](SNPP)
/
[Rrs(M2)](N20)

[Rrs(M4)](N20)
, (11)

and [Chl-a](N20)OC3V and [Chl-a](N20)CI are Chl-a data derived from VIIRS-N20 using the OC3V
[Eqs. (1) and (3)] and CI-based algorithm [Eqs. (8) and (9)], respectively, with effectively
r24 · [r](N20) = [r](SNPP).

2.2. Kd(490) algorithms

2.2.1. The Kd(490) algorithm for the open ocean

Over global open oceans, the water diffuse attenuation coefficient at the wavelength of 490 nm,
Kd(490), can be derived using the satellite-measured nLw(λ) ratio at the two wavelengths between
around 490 and 555 nm [24,40]. Specifically, for the open ocean, the Kd(490) algorithm for
VIIRS-SNPP can be written as:

[Kd(490)](SNPP) = A

(
[nLw(M3)](SNPP)

[nLw(M4)](SNPP)

)B

, (12)

with coefficients A and B of 0.1853 and−1.349, respectively. Therefore, using the same approach
discussed previously for Chl-a algorithms in Section 2.1, the open ocean Kd(490) algorithm for
VIIRS-N20 can be written as:

[Kd(490)](N20) = A

(
c34 ×

[nLw(M3)](N20)

[nLw(M4)](N20)

)B

, with (13)

c34 =
[nLw(M3)](SNPP)

[nLw(M4)](SNPP)
/
[nLw(M3)](N20)

[nLw(M4)](N20)
. (14)

Therefore, using Eqs. (13) and (14) for deriving Kd(490) over the global open ocean for
VIIRS-N20, VIIRS-N20-derived Kd(490) data are consistent with those from VIIRS-SNPP. The
effect of slight differences in SRFs from the two VIIRS sensors is now accurately accounted for.
Indeed, the open ocean Kd(490) algorithm for VIIRS-N20 is effectively calculated to be the same
as that for VIIRS-SNPP, i.e., [Kd(490)](N20) = [Kd(490)](SNPP).
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2.2.2. The Kd(490) algorithm for coastal and inland waters

For turbid coastal and inland waters, the Wang et al. (2009) [22] Kd(490) algorithm has
been implemented in MSL12 and used for routine production of VIIRS global Kd(490) data.
Specifically, VIIRS-measured spectral irradiance reflectance just beneath the sea surface R(λ) at
the bands M3 and M5 [R(M3) and R(M5)] are used, with R(λ) given by [28,39,41]

R(λ) =
4 nLw(λ)

0.52 F0(λ) + 1.7 nLw(λ)
, (15)

where F0(λ) is the extraterrestrial solar irradiance [6] at a given wavelength λ. Using R(λ) at
the VIIRS bands M3 and M5, the same formulation (the Eq. (9) of Wang et al. (2009) [22])
Kd(490) algorithm can be directly used for both VIIRS-SNPP and VIIRS-N20. Therefore, we
only need to compute proper R(λ) values for VIIRS-N20 (i.e., to be consistent with those from
VIIRS-SNPP). Specifically, for VIIRS-SNPP reflectance R(λ) is given by [42]

[R(λ)](SNPP) =
4 [nLw(λ)]

(SNPP)

0.52 [F0(λ)]
(SNPP) + 1.7 [nLw(λ)]

(SNPP) (16)

and the above Eq. (16) can be re-written for VIIRS-N20 as

[R(λ)](N20) =
4 [nLw(λ)]

(N20)

0.52 [F0(λ)]
(N20) × ([ρwN(λ)]

(N20)/[ρwN(λ)]
(SNPP)) + 1.7 [nLw(λ)]

(N20) , (17)

with now effectively [R(λ)](N20) = [R(λ)](SNPP). Therefore, particularly for VIIRS-N20 irradiance
reflectance just beneath the surface R(λ) at the bands M3 and M5, Eq. (17) becomes

[R(M3)](N20) =
4 [nLw(M3)](N20)

0.52 [F0(M3)](N20) × b3 + 1.7 [nLw(M3)](N20)
and (18)

[R(M5)](N20) =
4 [nLw(M5)](N20)

0.52 [F0(M5)](N20) × b5 + 1.7 [nLw(M5)](N20)
, (19)

with coefficients b3 and b5 given by

b3 =
[ρwN(M3)](N20)

[ρwN(M3)](SNPP)
and b5 =

[ρwN(M5)](N20)

[ρwN(M5)](SNPP)
. (20)

In addition, there is a weight W computation (the Eq. (14) of Wang et al. (2009) [22]) for the
merged Kd(490) algorithm applying for both open ocean and turbid coastal/inland waters [22],
i.e., for VIIRS-SNPP the weight is calculated as

[W](SNPP) = −1.175+4.512·
[Rrs(M5)](SNPP)

[Rrs(M3)](SNPP)
for 0.2604 ≤

[Rrs(M5)](SNPP)

[Rrs(M3)](SNPP)
≤ 0.4821. (21)

Similarly, converting the above Eq. (21) to VIIRS-N20, the weight formulation (the Eq. (14) of
Wang et al. (2009) [22]) for VIIRS-N20 is modified to

[W](N20) = −1.175 + r53 · 4.512
[Rrs(M5)](N20)

[Rrs(M3)](N20)
for 0.2604 ≤ r53

[Rrs(M5)](N20)

[Rrs(M3)](N20)
≤ 0.4821,

(22)
where

r53 =
[(
ρwN(M5)
ρwN(M3)

)] (SNPP)
/

[(
ρwN(M5)
ρwN(M3)

)] (N20)
. (23)

Obviously, with the modifications of the weight computation in Eqs. (22) and (23), the weights
derived from the two VIIRS sensors are effectively the same, i.e., [W](N20) = [W](SNPP).
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2.3. Coefficients derived from the MOBY in situ data

2.3.1. VIIRS-N20 and VIIRS-SNPP

Using the MOBY in situ hyperspectral optical measurements in the water off Hawaii [33], all
required coefficients can be accurately derived for the open ocean. In fact, VIIRS SRF-weighted
MOBY in situ nLw(λ) [or ρwN(λ)] data for both VIIRS-SNPP and VIIRS-N20 have been routinely
produced since the two VIIRS launched in October 2011 and November 2017, respectively.
Therefore, ratios of MOBY in situ-derived nLw(λ) [or ρwN(λ)] between the two VIIRS sensors
can be computed. Figure 1 provides scatter plots of the MOBY-measured nLw(λ) between
VIIRS-N20 and VIIRS-SNPP, showing very strong correlations in nLw(λ) from the two VIIRS
sensors (as expected). Figure 1(a) shows results of MOBY-measured in situ nLw(λ) in VIIRS-N20
(SRF-weighted) compared with those from VIIRS-SNPP (SRF-weighted) for the VIIRS spectral
bands at M1–M3, while Fig. 1(b) is comparison results for the VIIRS bands at M4, I1, and M5. In
fact, results in Fig. 1 show that over the MOBY site (open ocean waters) in situ MOBY-measured
nLw(λ) at the bands M1 and M2 are nearly identical between SNPP and NOAA-20, while they
are differed by about 5%, 16%, 15%, and 21% for bands M3, M4, I1, and M5, respectively. It
is important to note that as expected the two MOBY-measured nLw(λ) [or ρwN(λ)] spectra for
VIIRS-SNPP and VIIRS-N20 are strongly correlated (Fig. 1), and thus can be related to each
other. It is also noted that, although sensor SRF data are used for computations, all data in Fig. 1
are really from MOBY in situ measurements.

Fig. 1. Scatter plots of MOBY-measured and sensor SRF-weighted nLw(λ) between VIIRS-
N20 and VIIRS-SNPP for the VIIRS SNPP and N20 spectral bands of (a) 410 & 411 nm,
443 & 445 nm, and 486 & 489 nm and (b) 551 & 556 nm, 638 & 642 nm, and 671 & 667 nm.

Table 1 shows summary statistics [mean, median, and standard deviation (STD)] of MOBY in
situ data (sensor SRF-weighted) for per-band comparison between VIIRS-N20 and VIIRS-SNPP.
The first column in Table 1 shows the nominal center wavelengths (nm) for VIIRS-N20 and
VIIRS-SNPP bands. The next three columns in Table 1 are for statistics in nLw(λ) ratio (mean,
median, and STD) between VIIRS-N20 and VIIRS-SNPP. The last three columns in Table 1 are
for statistics in ρwN(λ) ratios (mean, median, and STD) between VIIRS-N20 and VIIRS-SNPP.
With the ratio values of nLw(λ) and ρwN(λ) from Table 1, all required coefficients in various
equations for VIIRS-N20 Chl-a and Kd(490) algorithms can be computed.
Using the median ratio values in Table 1 and taking VIIRS-SNPP as a reference sensor,

all required coefficients for modifying Chl-a and Kd(490) algorithms for VIIRS-N20 can be
calculated. The required coefficient values are summarized in Table 2 with the corresponding
applicable equations indicated. Thus, with the corresponding equations for Chl-a and Kd(490)
algorithms for VIIRS-N20, VIIRS-N20-derived Chl-a and Kd(490) data are now consistent with
those from VIIRS-SNPP.
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Table 1. Statistics in ratios (mean, median, and STD) of MOBY-measured nLw (λ) and ρwN(λ)
between VIIRS-N20 and VIIRS-SNPP. The data number used is 200.

VIIRS Band
(N20, SNPP)

(nm)

MOBY nLw(λ) Ratio
(N20 versus SNPP)

MOBY ρwN(λ) Ratio
(N20 versus SNPP)

Mean Median STD Mean Median STD

M1 (411, 410) 1.0046 1.0046 0.0003 0.9942 0.9942 0.0003

M2 (445, 443) 0.9994 0.9993 0.0011 0.9876 0.9875 0.0011

M3 (489, 486) 0.9518 0.9514 0.0019 0.9572 0.9568 0.0019

M4 (556, 551) 0.8422 0.8410 0.0049 0.8493 0.8481 0.0050

M5 (667, 671) 0.7859 0.7870 0.0202 0.7824 0.7836 0.0201

I1 (642, 638) 0.8448 0.8454 0.0101 0.8540 0.8546 0.0102

Table 2. Coefficients needed for modifying various equations for the VIIRS-N20 Chl-a and Kd (490)
algorithms, which are calculated from Table 1 with median values.

Equation Number Corresponding Coefficients

Eqs. (3) and (4) r24 = 0.8588, r34 = 0.8864

Eqs. (8) and (9) r2 = 1.0127, r4 = 1.1791, r5 = 1.2762

Eq. (11) r24 = 0.8588

Eq. (14) c34 = 0.8840

Eqs. (18) and (20) b3 = 0.9568

Eqs. (19) and (20) b5 = 0.7836

Eqs. (22) and (23) r53 = 1.2210

2.3.2. OLCI-S3A and VIIRS-SNPP

Similarly, using the OLCI-S3A (SRF-weighted) and VIIRS-SNPP (SRF-weighted) MOBY in
situ nLw(λ) [or ρwN(λ)] data, nLw(λ) [or ρwN(λ)] ratio values between the two sensors for the
corresponding spectral bands can be derived. Specifically, OLCI-S3A SRF-weighted MOBY
nLw(λ) [or ρwN(λ)] at the bands with nominal center wavelengths of 413, 443, 490, 560 nm are
compared with those of VIIRS-SNPP (SRF-weighted) bands (M1–M4) at the wavelengths of
410, 443, 486, and 551 nm. However, OLCI-S3A has three spectral bands at around the red
wavelength (i.e., 665, 674, and 681 nm) corresponding to the VIIRS-SNPP red band at 671 nm.
These nLw(λ) [or ρwN(λ)] (with specific sensor SRF weighted) ratio values at the three OLCI red
bands versus the VIIRS-SNPP red band at 671 nm can be derived using the MOBY hyperspectral
in situ optical measurements.
Figure 2 shows the scatter plots of the MOBY-measured in situ nLw(λ) (with specific sensor

SRF-weighted) between OLCI-S3A and VIIRS-SNPP. Figure 2(a) is for nLw(λ) at the OLCI
spectral bands of 413, 443, and 490 nm corresponding to the VIIRS-SNPP nLw(λ) at the spectral
bands of 410, 443, and 486 nm, respectively, while Fig. 2(b) is for the OLCI SRF-weighted
MOBY nLw(λ) at the bands of 560, 665, 674, and 681 nm compared with those from VIIRS-SNPP
SRF-weighted MOBY nLw(λ) at the spectral bands of 551, 671, 671, and 671 nm, respectively.
As discussed, VIIRS only has one red band (671 nm for SNPP and 667 nm for N20), compared
with the three bands from OLCI. Results in Fig. 2 show that for the short blue and blue bands
OLCI-S3A and VIIRS-SNPP have almost identical spectral characteristics (< ∼1%), while some
large differences are shown in other bands, in particular, for the green band (∼23%). However,
again as expected, OLCI-SRF-weighted and VIIRS-SRF-weighted MOBY nLw(λ) [or ρwN(λ)]
spectra are generally strongly correlated (Fig. 2).
Same as in Table 1 for VIIRS-N20 and VIIRS-SNPP, Table 3 provides the statistics in ratio

values of the MOBY-measured and sensor SRF-weighted in situ nLw(λ) and ρwN(λ) between
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Fig. 2. Scatter plots of the MOBY-measured and sensor SRF-weighted nLw(λ) between
OLCI-S3A and VIIRS-SNPP for the VIIRS-SNPP and OLCI-S3A spectral bands of (a) 410
& 413 nm, 443 & 443 nm, and 486 & 490 nm and (b) 551 & 560 nm, 671 & 665 nm, 671 &
674 nm, and 671 & 681 nm.

OLCI-S3A and VIIRS-SNPP. Results in Table 3 show that OLCI SRF-weighted MOBY in situ
nLw(λ) and ρwN(λ) at the short blue and blue bands (413 and 443 nm) are almost the same as
those from VIIRS-SNPP at the bands 410 and 443 nm. They are differed ∼1% over the open
ocean (oligotrophic waters). These differences are quite similar to the case of VIIRS-N20 versus
VIIRS-SNPP. The difference in the OLCI band at 490 nm is slightly larger (∼7–9%), compared
with those of VIIRS-N20 (∼5%) in Table 1. However, for OLCI-S3A green and red bands,
differences in nLw(λ) and ρwN(λ) between OLCI- and VIIRS-SRF-weighted MOBY in situ data
are quite significant, i.e., about 23%, 23%, 29%, and 35% for the OLCI bands at 560, 665,
671, and 681 nm (Table 3), respectively. They are all biased low compared with those from
VIIRS-SNPP.

Table 3. Statistics in ratios (mean, median, and STD) of MOBY-measured nLw (λ) and ρwN(λ)
between OLCI-S3A and VIIRS-SNPP. The data number used is 512.

Spectral Band
(OLCI, VIIRS)

(nm)

MOBY nLw(λ) Ratio
(OLCI versus VIIRS)

MOBY ρwN(λ) Ratio
(OLCI versus VIIRS)

Mean Median STD Mean Median STD

(413, 410) 0.9883 0.9882 0.0016 0.9883 0.9883 0.0016

(443, 443) 1.0080 1.0080 0.0013 1.0111 1.0111 0.0013

(490, 486) 0.9111 0.9109 0.0044 0.9338 0.9336 0.0045

(560, 551) 0.7649 0.7654 0.0083 0.7848 0.7853 0.0085

(665, 671) 0.7759 0.7746 0.0364 0.7631 0.7619 0.0358

(674, 671) 0.7102 0.7107 0.0378 0.7150 0.7155 0.0381

(681, 671) 0.6387 0.6429 0.0490 0.6544 0.6586 0.0502

Again, similar to the case for VIIRS-N20, using the median ratio values in Table 3, all required
coefficients for calculating consistent Chl-a and Kd(490) data from OLCI-S3A with those from
VIIRS-SNPP can be computed. These coefficients (with the corresponding applicable equations)
are summarized in Table 4. Thus, using the coefficients in Table 4 for modifying the Chl-a and
Kd(490) algorithms, OLCI-S3A-derived Chl-a and Kd(490) data are consistent with those from
VIIRS-SNPP for the global open ocean.
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Table 4. Coefficients needed for modifying various equations for the OLCI-S3A Chl-a and Kd (490)
algorithms, which are calculated from Table 3 with median values.

Equation Number Corresponding Coefficients

Eqs. (3) and (4) r24 = 0.7767, r34 = 0.8412

Eqs. (8) and (9) r2 = 0.9890, r4 = 1.2734, r5 = 1.3125

Eq. (11) r24 = 0.7767

Eq. (14) c34 = 0.8403

Eqs. (18) and (20) b3 = 0.9336

Eqs. (19) and (20) b5 = 0.7619

Eqs. (22) and (23) r53 = 1.2254

2.3.3. Required coefficients for SGLI-GCOM-C

The same approach can be carried out for SGLI-GCOM-C, taking VIIRS-SNPP as a reference
sensor for algorithms modifications. Specifically, SGLI-GCOM-C SRF-weighted MOBY nLw(λ)
[or ρwN(λ)] at the bands of 412, 443, 490, 566, and 672 nm are compared with the corresponding
VIIRS-SNPP (SRF-weighted) bands (M1–M5) at the wavelengths of 410, 443, 486, and 551, and
671 nm, respectively. It is noted that SGLI-GCOM-C has two red bands at 672 nm, one with
a low maximum radiance value (i.e., high measurement sensitivity that is applicable to ocean
applications) and another with a high maximum radiance value (i.e., low measurement sensitivity
that is applicable to land and atmospheric applications), corresponding to the VIIRS-SNPP red
band at 671 nm. Table 5 provides these nLw(λ) [or ρwN(λ)] ratio values at the six SGLI bands
versus the corresponding VIIRS-SNPP bands. Again, all required coefficients for calculating
consistent Chl-a and Kd(490) data from SGLI-GCOM-C with those from VIIRS-SNPP can be

Table 5. Statistics in ratios (mean, median, and STD) of MOBY-measured nLw (λ) and ρwN(λ)
between SGLI-GCOM-C and VIIRS-SNPP. The data number used is 193.

Spectral Band
(SGLI, VIIRS)

(nm)

MOBY nLw(λ) Ratio
(SGLI versus VIIRS)

MOBY ρwN(λ) Ratio
(SGLI versus VIIRS)

Mean Median STD Mean Median STD

(412, 410) 0.9868 0.9868 0.0015 0.9853 0.9853 0.0015

(443, 443) 1.0070 1.0072 0.0013 1.0095 1.0097 0.0013

(490, 486) 0.9282 0.9276 0.0034 0.9527 0.9521 0.0035

(566, 551) 0.6961 0.6956 0.0087 0.7136 0.7132 0.0089

(672, 671) 0.7575 0.7570 0.0290 0.7585 0.7580 0.0290

(672, 671) 0.7571 0.7570 0.0289 0.7582 0.7581 0.0290

Table 6. Coefficients needed for modifying various equations for the SGLI-GCOM-C Chl-a and
Kd (490) algorithms, which are calculated from Table 5 with median values.

Equation Number Corresponding Coefficients

Eqs. (3) and (4) r24 = 0.7063, r34 = 0.7491

Eqs. (8) and (9) r2 = 0.9904, r4 = 1.4021, r5 = 1.3193

Eq. (11) r24 = 0.7063

Eq. (14) c34 = 0.7499

Eqs. (18) and (20) b3 = 0.9521

Eqs. (19) and (20) b5 = 0.7580

Eqs. (22) and (23) r53 = 1.2561
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computed. These coefficients with the corresponding applicable equations are provided in Table
6.

3. Results

3.1. Results from MOBY in situ optics data

Using the derived coefficients in Tables 2, 4, and 6 for the corresponding applicable equations,
new Chl-a and Kd(490) data can be derived and evaluated using the modified algorithms for
VIIRS, OLCI, and SGLI. Note that all results presented in this section are from MOBY in situ
data, with specific sensor SRF data used for producing the corresponding sensor-measured data.
Specifically, in situ MOBY hyperspectral optics data set was used to construct a synthetic data set
of nLw(λ) spectra, weighted with SRFs corresponding to VIIRS-SNPP, VIIRS-N20, OLCI-S3A,
and SGLI-GCOM-C. With this data set, Chl-a and Kd(490) data that would be derived from
VIIRS-N20, OLCI-S3A, and SGLI-GCOM-C over the MOBY site (open oceans) were compared
with those from VIIRS-SNPP, i.e., we assume VIIRS-SNPP as a reference sensor. These results
are presented in the following three sub-sections.

3.1.1. VIIRS-N20-derived Chl-a and Kd(490)

Figure 3 shows comparisons (scatter plots) for Chl-a and Kd(490) calculated using the SRF-
weighted VIIRS-N20 and VIIRS-SNPP MOBY in situ data. In fact, Chl-a and Kd(490) data in
Fig. 3 were derived using the corresponding Chl-a and Kd(490) algorithms with the inputs from
the MOBY in situ nLw(λ) spectra, which are computed with the SRF-weighted for VIIRS-N20
or VIIRS-SNPP. Specifically, Figs. 3(a) and 3(b) are Chl-a results derived from VIIRS-N20
compared with those from VIIRS-SNPP using the OC3V [19] and OCI [21] Chl-a algorithm,
respectively, while Figs. 3(c) and 3(d) are Kd(490) data using the open ocean Kd(490) algorithm
[40] and turbid coastal/inland water Kd(490) algorithm [22], respectively. They show significant
improvements in data consistency between VIIRS-N20 and VIIRS-SNPP Chl-a and Kd(490)
products. Using the original Chl-a and Kd(490) algorithms, i.e., without algorithms modifications,
VIIRS-N20-derived Chl-a andKd(490) data are significantly different fromVIIRS-SNPP, although
the spectral band differences between the two sensors are generally small. For the OC3V Chl-a
algorithm, without algorithm modifications the mean difference between the two VIIRS sensors is
∼30% [Fig. 3(a)], while the mean difference is ∼8% for the OCI Chl-a algorithm [Fig. 3(b)] due
to the fact that the CI-based Chl-a algorithm is much more tolerant to the reflectance differences
between the two sensors [20,21]. For Kd(490) evaluation results, without algorithm modifications
differences for both the open ocean and turbid coastal/inland waters are ∼15% [Figs. 3(c) and
3(d)] between the two VIIRS sensors. With the proposed approach for modifying the Chl-a
and Kd(490) algorithms for VIIRS-N20, both Chl-a and Kd(490) data are now essentially same
(consistent) from the two VIIRS sensors.

Results in Fig. 3 demonstrate that the proposed approach works perfectly in modifying the
VIIRS-N20 Chl-a and Kd(490) algorithms. In fact, it validates the algorithm modification
approach as the MOBY in situ optics data are highly accurate, in particular, there are no errors
related to the satellite ocean color data processing (e.g., atmospheric correction).

3.1.2. OLCI-S3A-derived Chl-a and Kd(490)

Figure 4 presents comparison results for Chl-a and Kd(490) using the SRF-weighted OLCI-S3A
and VIIRS-SNPP MOBY in situ data sets for cases with and without the proposed algorithm
modifications. Figures 4(a) and 4(b) are the OLCI-derived Chl-a data compared with those
from VIIRS-SNPP using the OC3V algorithm and OCI algorithm, respectively, while Figs. 4(c)
and 4(d) are OLCI-derived Kd(490) data compared with those from VIIRS-SNPP using the
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Fig. 3. Comparisons (scatter plots) of Chl-a and Kd(490) between using the SRF-weighted
VIIRS-N20 and VIIRS-SNPP MOBY in situ data for cases of with and without algorithms
modifications for a specific product derived from (a) OC3V Chl-a algorithm, (b) OCI Chl-a
algorithm, (c) open ocean Kd(490) algorithm, and (d) turbid water Kd(490) algorithm.

open ocean Kd(490) algorithm and turbid coastal/inland water Kd(490) algorithm, respectively.
They are all derived using the reflectance input of the MOBY in situ optics data (the sensor
SRF-weighted) for Chl-a and Kd(490) algorithms. Obviously, from the results in Fig. 4, the same
conclusion can be obtained as for the results in Fig. 3 for VIIRS-N20, i.e., using the proposed
approach in modifying the Chl-a and Kd(490) algorithms, OLCI-S3A and VIIRS-SNPP can now
derive consistent Chl-a and Kd(490) products. In fact, as statistics results indicated in the plots,
the mean differences between OLCI-S3A and VIIRS-SNPP are improved from the original ∼47%,
∼17%, ∼21%, and ∼15% to almost all 0% for OC3V Chl-a [19], OCI Chl-a [21], open ocean
Kd(490) [40], and turbid coastal/inland water Kd(490) algorithm [22], respectively. Indeed, these
improvements are quite significant. Without algorithm modifications, OLCI- and VIIRS-derived
Chl-a and Kd(490) data would represent two different ocean water properties. It should also be
noted that, again, Chl-a data derived using the OCI algorithm performed much better than those
from the OC3V algorithm as shown in Fig. 4(b). In fact, comparing with results in Fig. 4(a) with
the OC3V Chl-a algorithm, OLCI-S3A-derived Chl-a data using the OCI algorithm are more
consistent with those from VIIRS-SNPP even after the algorithm modification, particularly over
very low or relatively high values of Chl-a data [Fig. 4(b)].

3.1.3. SGLI-GCOM-C-derived Chl-a and Kd(490)

Comparison results of Chl-a and Kd(490) derived using the SRF-weighted SGLI-GCOM-C and
VIIRS-SNPP MOBY in situ data with and without the proposed algorithm modifications are
shown in Fig. 5. Figures 5(a) and 5(b) are the SGLI-derived Chl-a data compared with those
from VIIRS-SNPP using the OC3V algorithm and OCI algorithm, respectively, while Figs. 5(c)
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Fig. 4. Comparisons (scatter plots) of Chl-a and Kd(490) between using the SRF-weighted
OLCI-S3A and VIIRS-SNPP MOBY in situ optics data for cases of with and without
algorithms modifications for a specific product derived from (a) OC3V Chl-a algorithm,
(b) OCI Chl-a algorithm, (c) open ocean Kd(490) algorithm, and (d) turbid water Kd(490)
algorithm.

and 5(d) are SGLI-derived Kd(490) data compared with those from VIIRS-SNPP using the open
ocean Kd(490) algorithm and turbid water Kd(490) algorithm, respectively. Again, with the
proposed approach in modifying the Chl-a and Kd(490) algorithms, SGLI and VIIRS produce
consistent Chl-a and Kd(490) products. Mean differences between SGLI and VIIRS-SNPP are
improved from the original ∼59%, ∼21%, ∼32%, and ∼17% to about 0.5%, 0.1%, 0%, and
0.2% for OC3V Chl-a [19], OCI Chl-a [21], open ocean Kd(490) [40], and turbid water Kd(490)
algorithm [22], respectively. It is concluded again that, comparing results in Fig. 5(a) with the
OC3V Chl-a algorithm, SGLI-derived Chl-a data using the OCI algorithm [Fig. 5(b)] are much
more consistent with those from VIIRS-SNPP even after the algorithm modification.
Furthermore, the effects of the Chl-a algorithm modifications can be demonstrated with an

example for the OC3V Chl-a algorithm shown in Fig. 6. Figure 6 shows results of Chl-a
as a function of the maximum reflectance ratio values [Eqs. (3) and (4)] for the original
OC3V algorithm (for VIIRS-SNPP), OC3V algorithm for VIIRS-N20 (or OLCI-S3A) without
modification, and OC3V algorithm with modification for a specific sensor. Results in Fig. 6 show
that for both VIIRS-N20 and OLCI-S3A the coefficients for OC3V Chl-a algorithm are effectively
modified such that the OC3V algorithm will have the same curve in Chl-a as a function of the
maximum reflectance ratio with the input from VIIRS-SNPP, VIIRS-N20, and OLCI-S3A. In
other words, the coefficients in the OC3V Chl-a algorithm are effectively changed for VIIRS-N20
and OLCI-S3A to have the same relationship of Chl-a as a function of the maximum reflectance
ratio in the all three sensors (i.e., dotted line in Fig. 6) using the sensor-measured nLw(λ) spectra.
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Fig. 5. Comparisons (scatter plots) of Chl-a and Kd(490) between using the SRF-weighted
SGLI-GCOM-C and VIIRS-SNPP MOBY in situ optics data for cases of with and without
algorithms modifications for a specific product derived from (a) OC3V Chl-a algorithm,
(b) OCI Chl-a algorithm, (c) open ocean Kd(490) algorithm, and (d) turbid water Kd(490)
algorithm.

Fig. 6. Chl-a as a function of the maximum reflectance ratio value from the MOBY in situ
data for VIIRS-SNPP compared with the original and modified OC3V algorithm for the
satellite sensor of (a) VIIRS-N20 and (b) OLCI-S3A.

3.2. Results from satellite measurements

The proposed approach for modifying the Chl-a and Kd(490) algorithms has been implemented
in MSL12, in particular, for VIIRS-N20 and OLCI-S3A. The implementation of the satellite
algorithms is straightforward. In fact, it can be done quite efficiently, for example, for the OC3V
Chl-a algorithm, a common code for the algorithm as in Eqs. (1), (3), and (4) can be built
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including the correction coefficients. The same code can be applied to any sensors with the
corresponding coefficients, e.g., coefficients in Tables 2, 4, and 6 for VIIRS-N20, OLCI-S3A,
and SGLI-GCOM-C, as well as coefficients for VIIRS-SNPP (a reference sensor) that are all set
to 1. Some detailed evaluation results from VIIRS and OLCI are provided in the following two
sub-sections.

3.2.1. VIIRS-N20-derived Chl-a and Kd(490) data

Figure 7 shows an example of comparison results (density plots) for VIIRS-derived ocean color
products over global open oceans and coastal/inland waters on June 1, 2018 between VIIRS-N20
(with algorithm modifications) and VIIRS-SNPP. Figure 7(a) is for Chl-a data derived using the
OCI Chl-a algorithm [21] and Fig. 7(b) is for Kd(490) data using the Wang et al. (2009) algorithm
[22]. It is particularly noted that the comparisons (Fig. 7) are for all global ocean color data (open
oceans and coastal/inland waters) derived on June 1, 2018. Therefore, results in Fig. 7 show that
for cases of Chl-a < ∼0.5 mg m−3 and Kd(490) < ∼0.3 m−1, which is usually the case for the
global open ocean, with the algorithms modifications VIIRS-N20 derived Chl-a and Kd(490) data
are consistent with those from VIIRS-SNPP, while for high Chl-a and Kd(490) data (usually over
coastal and inland waters) there are some slightly biased high values from VIIRS-N20. In fact,
quantitative comparisons show that the ratios of VIIRS-N20-derived versus VIIRS-SNPP-derived
Chl-a over global deep waters (depth ≥ 1 km) on June 1, 2018 [Fig. 7(a)] have mean, median,
and STD values of 0.9894, 0.9912, and 0.1708, respectively, while these values for Kd(490) are
1.0264, 1.0240, and 0.1076, respectively. Therefore, over global deep waters, VIIRS-N20 and
VIIRS-SNPP produced consistent Chl-a and Kd(490) data on June 1, 2018. Statistical results
were also computed for global coastal and inland waters (regions with water depth < 1 km). For
the case of June 1, 2018, the differences in VIIRS-N20- and VIIRS-SNPP-derived Chl-a and
Kd(490) are about 8–10% (VIIRS-N20 biased high) as shown in Fig. 7. These comparisons were
also carried out for a different day on April 30, 2018 with similar results. The statistics for both
cases (April 30 and June 1, 2018) are summarized in Table 7. In Table 7, results are shown in
different global ocean regions, i.e., global oligotrophic waters, global deep waters, and global
coastal/inland waters, as well as data numbers used for the statistics computations. Results in
Table 7 confirm the performance of the proposed approach (as results shown using the MOBY
in situ data) for modifying corresponding Chl-a and Kd(490) algorithms in order to produce
consistent Chl-a and Kd(490) data from the two VIIRS over global deep waters.

Table 7. Statistics results in ratios (mean, median, and STD) of VIIRS-derived Chl-a and Kd (490)
between VIIRS-N20 and VIIRS-SNPP for global oligotrophic waters, deep waters, and coastal/inland

waters. Data number (Num) used for statistics is also shown.

Date (in
2018)

Global Region Num
(×105)

VIIRS Chl-a Ratio
(N20 versus SNPP)

VIIRS Kd(490) Ratio
(N20 versus SNPP)

Mean Median STD Mean Median STD

Oligotrophic Waters 3.12 0.9686 0.9688 0.1359 1.0129 1.0093 0.0980

April 30 Deep Waters 8.04 0.9858 0.9883 0.1965 1.0268 1.0208 0.1170

Coastal/Inland Waters 1.50 1.0427 1.0696 0.3300 1.0959 1.0981 0.2274

Oligotrophic Waters 3.09 0.9699 0.9728 0.1419 1.0102 1.0051 0.1017

June 1 Deep Waters 6.82 0.9884 0.9905 0.1700 1.0257 1.0232 0.1084

Coastal/Inland Waters 1.31 1.0497 1.0754 0.3349 1.0990 1.1069 0.2374

Furthermore, using the revised Chl-a and Kd(490) algorithms in MSL12, time series of
VIIRS-N20-derived Chl-a and Kd(490) data over the global deep water (depth ≥ 1 km) are
compared with those from VIIRS-SNPP. Figure 8 provides results of quantitative comparisons
between VIIRS N20 and SNPP for Chl-a [Fig. 8(a)] and Kd(490) [Fig. 8(b)] over global deep
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Fig. 7. Comparison results of density plot for VIIRS-derived ocean color products over
global oceans and inland waters (all pixels) on June 1, 2018 between VIIRS-N20 (with
algorithm modifications) and VIIRS-SNPP for data product of (a) Chl-a (OCI algorithm)
and (b) Kd(490).

waters for the time period of January 1 to September 30, 2018. Chl-a data were derived using the
OCI Chl-a algorithm [21], and the global daily mean Chl-a and Kd(490) data were derived over
all daily VIIRS retrievals in the global deep water region. It is noted that, for Chl-a [Fig. 8(a)]
and Kd(490) [Fig. 8(b)] comparison plots, there were two significant data jumps on March 23,
2018 and April 27, 2018 for VIIRS-N20. These are due to sensor on-orbit calibration issues (not
related to the ocean color data processing), i.e., significant sensor calibration jumps happened for
VIIRS-N20 on these two days, leading to errors in the derived ocean color products. Results in
Fig. 8 show that, from April 27, 2018 onward, VIIRS-NOAA-20-derived Chl-a and Kd(490) data
are consistent with those from VIIRS-SNPP over global deep waters. In fact, Chl-a and Kd(490)
data are essentially the same from the two VIIRS sensors, consistent with the evaluation results
from the MOBY in situ data.

Fig. 8. Comparison results of VIIRS-derived ocean color products over global deep waters
(depth ≥ 1 km) between VIIRS-N20 (with algorithm modifications) and VIIRS-SNPP for
data product of (a) Chl-a and (b) Kd(490).

In addition, to compare spatial distributions in the global ocean color product from the two
VIIRS sensors, Figs. 9(a) and 9(b) provide the global daily Chl-a images on August 14, 2018
derived from VIIRS-SNPP and VIIRS-N20, respectively. Overall, global daily Chl-a spatial
distribution from the two VIIRS sensors are quite consistent, and no obvious differences (or
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artifacts) are observable, although data gaps from the two sensors are different. Therefore, global
Chl-a and Kd(490) data from VIIRS SNPP and N20 can be directly merged, as shown in Fig.
9(c) for Chl-a and Fig. 9(d) for Kd(490), improving the data coverage significantly. Again, there
are no observable artifacts from VIIRS SNPP and N20 merged global daily Chl-a [Fig. 9(c)] and
Kd(490) [Fig. 9(d)] imagers. In fact, a recent study showed that VIIRS SNPP and N20 merged
global Chl-a data are quite effective and useful for capturing more details in the dynamic of ocean
features [43]. Indeed, the merged VIIRS daily global Chl-a and Kd(490) data, as well as global
daily gap-free Chl-a data which are derived from the merged Chl-a data, are now being routinely
produced [43,44].

Fig. 9. Satellite-derived global daily ocean color product images on August 14, 2018 for
(a) Chl-a from VIIRS-SNPP, (b) Chl-a from VIIRS-N20, (c) Chl-a from the merged VIIRS
SNPP and N20, and (d) Kd(490) from the merged VIIRS SNPP and N20.

3.2.2. OLCI-S3A-derived Chl-a and Kd(490) over the global deep water

Figure 10 shows comparison results of OLCI-S3A- and VIIRS-SNPP-derived Chl-a [Fig. 10(a)]
and Kd(490) [Fig. 10(b)] data over the global deep water (depth ≥ 1 km) using the MSL12 ocean
color data processing system (with and without the algorithms modifications for OLCI-S3A).
VIIRS-SNPP serves as a reference sensor. Comparison results in Fig. 10 cover a time period of
January–December 2018, and daily mean values of Chl-a and Kd(490) were derived over all daily
OLCI-S3A and VIIRS-SNPP retrievals in the global deep water region. Results in Fig. 10 clearly
show the improvements with the proposed algorithm modifications for OLCI-S3A-derived Chl-a
and Kd(490) data over global deep waters, and further confirmed the algorithms performance as
also shown in Fig. 4 using the MOBY in situ optics data (as expected), i.e., without algorithm
modifications the OLCI-S3A-deirved Chl-a and Kd(490) data are biased low compared with those
from VIIRS-SNPP. In fact, results in Fig. 10 provide the similar conclusion that it is important to
account for the sensor SRF effect on the satellite-derived ocean biological and biogeochemical
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products in order to produce consistent ocean color products among various satellite ocean color
sensors. Therefore, using the proposed algorithms, satellite-derived Chl-a and Kd(490) data can
be directly merged from VIIRS-SNPP, VIIRS-N20, and OLCI-S3A, further improving the global
daily data coverage.

Fig. 10. Comparisons of OLCI-S3A- and VIIRS-SNPP-derived ocean color products (with
and without algorithm modifications for OLCI-S3A) over global deep waters (depth ≥ 1
km) for (a) Chl-a and (b) Kd(490). Note that ocean color data for both VIIRS-SNPP and
OLCI-S3A are derived using the MSL12 ocean color data processing system.

4. Discussions

For different satellite ocean color sensors, there are always spectral band differences even for
sensors designed to have the same spectral characteristics. Therefore, satellite-derived nLw(λ) [or
ρwN(λ)] spectra are generally not the same among sensors, leading to some differences in retrieval
of ocean biological and biogeochemical products if the corresponding algorithms are not properly
adjusted. It is demonstrated in this study that, using the proposed approach for modifying Chl-a
and Kd(490) algorithms, satellite-derived Chl-a and Kd(490) data are all consistent over global
deep waters from VIIRS-SNPP, VIIRS-N20, OLCI-S3A, and SGLI-GCOM-C, although nLw(λ)
spectra from the four sensors are different. It is noted that the algorithms performance (e.g.,
over various ocean regions) is not evaluated (not the purpose of this study), and readers can find
many such evaluation studies, e.g., results from a round-robin algorithm comparison [45]. The
major advantage for the proposed approach for modifying satellite biological and biogeochemical
algorithms, as well as any other algorithms that use the input of satellite-measured nLw(λ) spectra,
is that no corresponding in situ ocean property data are required. It is only required to have
accurate hyperspectral nLw(λ) spectra for deriving necessary coefficients converting radiance
values from one sensor to another. In addition, the derivation of the algorithm modification is
rigorous assuming that the required coefficients can be derived accurately.
In fact, the basic physics for the approach is really to get satellite-derived nLw(λ) spectra

consistent among satellite sensors for those involved for the satellite algorithms for deriving
ocean/water biological and biogeochemical properties, e.g., results shown in Figs. 1 and 2. The
radiance relationships among spectral bands with slight wavelength differences from various
satellite sensors over the MOBY site (e.g., results presented in Figs. 1 and 2) should generally
hold for open ocean (Case-1) waters, i.e., water properties described by the ocean Case-1 models
[39,46]. Although the median radiance ratio values between two sensors are used for computing
the required coefficients (Tables 2, 4, and 6), for some spectral bands (particularly with large
spectral band differences between two sensors), linear (or even quadratic) fit may be better and
required (i.e., assume non-zero intercept).
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As discussed throughout this study, the purpose of this paper is to develop an approach for
producing consistent ocean biological and biogeochemical products (or any other nLw(λ)-based
products). We used VIIRS-SNPP as a reference sensor, and Chl-a and Kd(490) data derived from
other satellite sensors (e.g., VIIRS-N20, OLCI-S3A, SGLI-GCOM-C, etc.) are converted to (be
consistent with) those from VIIRS-SNPP. As the first sensor in the VIIRS series (and because
there has been more time/effort working on the sensor), ocean color products derived from
VIIRS-SNPP have been well studied, evaluated, and validated, through presentations on various
conferences, meetings, and publications [47–50]. Obviously, we have much more confidence
in the data quality with VIIRS-SNPP-derived ocean color products than that from VIIRS-N20.
Certainly, the reference sensor may be different depending on the purpose and applications, e.g.,
regional studies with high spatial resolution measurements. However, no matter which sensor is
used as a reference, ocean biological and biogeochemical products derived from multiple satellite
sensors should all be consistent and validated to the true values, e.g., from in situ measurements.
With the retrieval of consistent Chl-a and Kd(490) data from various satellite ocean color sensors,
product validation from one sensor (e.g., VIIRS-SNPP) can also be applied to other sensors (e.g.,
VIIRS-N20, OLCI-S3A, SGLI-GCOM-C, etc.). Therefore, effectively, the amount of in situ
validation data can be significantly increased and the collective ocean color validation efforts
from various international agencies and research groups can be used.
In this study, the coefficients for modifying the satellite biological and biogeochemical

algorithms are derived using the MOBY hyperspectral in situ optics data. However, the required
coefficients may also be derived using the well-established and reliable ocean modeling data,
in particular, for the global open ocean for which its ocean optical and bio-optical properties
are mostly driven by ocean phytoplankton properties [39,46]. However, it is always desirable
and preferable to use the same ocean optics data that are used for the sensor on-orbit vicarious
calibration [51–55] such as the MOBY in situ optics data [33].
In addition, since MOBY has a two-decade-long hyperspectral in situ ocean optics data set,

this high quality in situ optics data may be useful for any past, present, and new satellite sensors,
as long as the corresponding sensor SRFs are available. Indeed, the proposed approach for
the required satellite algorithms modifications only need the sensor SRF data. This is another
important advantage for the proposed approach, in particular, for the new satellite ocean color
sensors, i.e., the modified satellite algorithms can be ready at the satellite launch date (only
requiring sensor SRFs) and no new in situ data are really needed for this purpose.
The focus of this study is for the global open ocean because the required coefficients for the

algorithm modifications are derived over the open ocean MOBY site. Over turbid coastal and
inland waters, the nLw(λ) spectral relationships (with slightly different wavelengths) between
two sensors may be different from those of the open ocean. Furthermore, water biological and
biogeochemical algorithms for coastal and inland waters are usually different and much more
complicated. Thus, satellite biological and biogeochemical algorithms are usually different from
those discussed in this study. However, the proposed methodology can still be applied to coastal
and inland waters, in particular, for the regional applications, e.g., with well-established regional
nLw(λ) spectral relationships among satellite sensors.
It should be noted that as results have shown in Fig. 8, in particular, for the sudden jumps

in Chl-a and Kd(490) data on March 23, 2018 and April 27, 2018, respectively, sensor on-orbit
calibration is extremely important as ocean color products are highly sensitive to the accuracy of
sensor-measured radiances, i.e., sensor data records (SDR, or Level-1B data) [34]. VIIRS-SNPP
SDR data were derived using the specifically improved ocean color SDR, including both solar and
lunar calibrations [56]. In addition, on-orbit vicarious calibration using the MOBY in situ optics
data has been carried out for VIIRS [55]. Therefore, it is important to note that the proposed
approach for modifying the ocean biological and biogeochemical algorithms, as well as any other
algorithms, is based on the fact that satellite-derived nLw(λ) spectra are accurate, in particular,
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nLw(λ) spectra from multiple satellite ocean color sensors are derived consistently (e.g., using
the same MSL12 for ocean color data processing).

5. Conclusion

A methodology is developed to account for the differences in the specifics of sensor spectral
characteristics from multiple satellite ocean color sensors. It is assumed that satellite sensors have
common spectral bands for remote sensing of global ocean optical, biological, and biogeochemical
properties. Therefore, differences in these common spectral bands for ocean color remote sensing
are generally not significant. The differences in sensor spectral characteristics from different
satellite sensors always exist even for the same satellite series that is designed to have the
same sensor spectral characteristics, e.g., VIIRS on the SNPP and JPSS series, OLCI on the
Sentinel-3 series, etc. To account for the effects of sensor spectral band differences on the satellite
biological and biogeochemical algorithms, e.g., Chl-a and Kd(490) algorithms, the formulas for
the algorithm modifications are rigorously derived, and the required coefficients are obtained
from high accurate MOBY hyperspectral in situ optics data set (for global open ocean waters).

Evaluation results show that, using the proposed approach for modifying the Chl-a and Kd(490)
algorithms, VIIRS-N20- and OLCI-S3A-derived Chl-a and Kd(490) data are consistent with
those from VIIRS-SNPP for the MOBY site and over global deep waters. Therefore, global
Chl-a and Kd(490) data can be directly merged from the two VIIRS sensors, and there are no
observable artifacts from the merged ocean color products. In addition, OLCI-S3A-derived
global Chl-a and Kd(490) may also be merged with those from the two VIIRS, further improving
the data coverage. With the proposed algorithm modifications, SGLI-GCOM-C-derived Chl-a
and Kd(490) are evaluated and are consistent with those from VIIRS-SNPP over the MOBY site.
Finally, it is important to note that using the mission-long MOBY in situ optics data

(1997–present) the proposed approach for the algorithm modifications can be used for any
past, present, and new satellite ocean color sensors, as long as the specific sensor SRFs are
available. Therefore, using the proposed approach, the modified algorithms can be ready before
the launch of new satellite sensors.
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